

Руководство по эксплуатации вбрм.007.000.000 рэ

Версия 1.1

Устройство приема-передачи

УМКа440

VMKal440

www.net868.ru

ОГЛАВЛЕНИЕ

BBEĮ	ДЕНИЕ	4
1.	НАЗНАЧЕНИЕ И УСЛОВИЯ ПРИМЕНЕНИЯ	5
1.1.	Основные сведения	5
1.2.	Технические характеристики	6
1.3.	Маркировка изделия	7
1.4.	Внутреннее устройство	7
1.5.	Частотный план устройства	8
2.	ПОДГОТОВКА К РАБОТЕ	
2.1.	Описание устройства	
2.2.	Описание входов	11
2.3.	Описание работы сети	12
2.4.	Индикация устройства	13
2.5.	Описание работы устройства	14
3.	ПРОВЕРКА, МОНТАЖ И ЗАПУСК УСТРОЙСТВА	16
3.1.	Обследование помещения	16
3.2.	Установка перемычки для выбора источника питания	
3.3.	Подключение устройства к счетчикам	
3.4.	Подключение к сети LORAWAN	20
3.5.	Настройка устройства	20
4.	ОБНОВЛЕНИЕ ПРОГРАМНОГО ОБЕСПЕЧЕНИЯ	21
5.	комплектность	23
6.	ОБСЛУЖИВАНИЕ И ГАРАНТИИ ИЗГОТОВИТЕЛЯ	24
6.1.	Обслуживание	24
6.2.	Срок службы и хранения, гарантии изготовителя	24
6.3.	Сведения о рекламациях	25
При	ложение А: Формат передачи данных	26
При	ложение В: Описание команд	28
При	ложение Г. Значения конфигурации по умолчанию:	

История изменений

Версия	Описание	Дата
1.0	Создание документа	14.06.2017
1.1	Переработанная версия документа	10.09.2018

ВВЕДЕНИЕ

Настоящее руководство по эксплуатации (далее руководство, РЭ) распространяется на устройство приемапередачи УМКа440 (далее устройство, изделие) и определяет порядок установки и подключения, а также содержит описание функционирования устройства и управления им.

Руководство предназначено для специалистов, ознакомленных с правилами выполнения ремонтных и монтажных работ на объектах водоснабжения и владеющих базовыми знаниями в области применения электронного оборудования учета и измерений.

Для обеспечения правильного функционирования, установка и настройка устройства должна осуществляться квалифицированными специалистами. Для успешного применения изделия, необходимо ознакомиться с принципом работы системы удаленного учета целиком, и понять назначение всех ее составляющих в отдельности. Поэтому настоятельно рекомендуется перед началом работы ознакомиться с основами функционирования систем удаленного сбора показаний, LoRa-технологии, особенностями передачи данных через сеть LoRaWAN.

Данное руководство описывает работу изделия с прошивкой указанной в таблице 1.1.

Таблица 1.1 Версия ПО

ПО	Версия			
Прошивка устройства	1.3.3.			

Изделие выпускается по техническим условиям ТУ 26.30.11-002-29608716-2018.

Изготовитель оставляет за собой право вносить изменения в конструкцию, технические характеристики и программное обеспечение изделия без уведомления об этом потребителя. Для получения сведений о последних изменениях необходимо обращаться по адресу: 350010, г. Краснодар, ул. Зиповская, д. 5 корпус 1, литер 2Б, ООО «ИНТЕРНЕТ ВЕЩЕЙ».

Сайт изготовителя: http://net868.ru Техническая поддержка: http://help.net868.ru Телефон: 8(800)77 00 112

1. НАЗНАЧЕНИЕ И УСЛОВИЯ ПРИМЕНЕНИЯ

1.1. Основные сведения

Устройство приёма-передачи УМКа44О (далее – устройство, УМКа44О) предназначено для сбора и передачи информации с импульсных выходов счётчиков воды, в системах сбора данных по технологии LoRaWAN. К устройству можно подключить до шести счетчиков.

УМКа440 относится к классу энергоэффективных, низкопотребляющих устройств технологий LPWAN. Устройство передаёт данные на свободном от лицензирования диапазоне частот 868 МГц, используя при этом технологию LoRa согласно спецификации «LoRaWAN 1.0 specification».

Устройство работает от источника питания в виде литиевого элемента напряжением 3.6В. Устройство определяет и информирует пользователя о неисправности (разряде) батареи.

Внешний вид устройства изображен на рисунке 1.1.

Рисунок 1.1 Общий вид устройства

1.2. Технические характеристики

Основные технические характеристики УМКа440 приведены в таблице 1.2.

Таблица 1.2 Технические характеристики УМКа440

Параметр	Значение				
Основные					
Интерфейс работы со счетчиками	Импульсный вход				
Количество импульсных входов	6				
Температурный диапазон, °С	от +5 до 85				
Дополнительные интерфейсы	mini-B USB 2.0				
Ограничения импульсных выходов					
Максимальная частота импульсного сигнала, Гц	от 0.8 до 3.2				
Сопротивление в замкнутом состоянии, кОм	от О до 2				
Сопротивление в разомкнутом состоянии , кОм	не менее 15				
Время замкнутого состояния , мс	не менее 300				
Время разомкнутого состояния, мс	не менее 300				
LoRaWAN					
Класс устройства LoRaWAN	А				
Количество каналов LoRa	8				
Частотный план	RU864; RU868; EU868				
Рабочая частота, МГц	864865; 868869.				
Способ активации в сети LoRaWAN	ОТАА				
Мощность передатчика, мВт	Не более 25				
Скорость передачи данных в сети LoRa, кбит/сек	От 0,3 до 40				
Период выхода на связь	8 часов				
Чувствительность , dBm	-138				
Питание					
Напряжение батареи, В	От 3,3 до 3,6				
Емкость батареи, мА/ч	3600				
Определение неисправности (разряда) батареи	Есть				
Корпус					
Размер корпуса	90x35x65				
Степень защиты корпуса	IP20				
Крепление	Настенное				
Масса не более, г	Не более 150				

1.3. Маркировка изделия

В наклейке на корпусе изделия содержится следующая информация:

- Название устройства;
- Серийный номер;
- Штрих код;
- Параметр DevEUI.

Так же информация продублирована в паспорте устройства.

1.4. Внутреннее устройство

Структурно устройство УМКа440 разделяется на несколько блоков (рисунок 1.2).

Рисунок 1.2 Структурная блок-схема устройства

Как видно из блок-схемы, устройство имеет в своём составе такие блоки как:

- 1. Датчик магнитного поля для активации и управления устройства;
- 2. Индикацию (светодиод) для отображения текущего состояния устройства;
- 3. 6 дискретных входов для считывания информации со счетчиков;
- 4. Передатчик для работы в сети LoRaWAN;
- 5. Процессор осуществляет контроль и управление всеми системами;
- 6. Батарейное питание;
- 7. USB для настройки и конфигурирования;
- 8. Сервисная кнопка для активации и управления устройства;
- 9. Внешнее питание подключения внешнего источника питания с выходным напряжением от 5 до 12 В.

1.5. Частотный план устройства

Устройства поддерживают следующие частотные планы:

- RU864(По умолчанию). В устройство загружены следующие частоты:

Таблица 1.3 Частотный план RU864

Канал	Частота	Модуляция		
0	868.9 MHz	MultiSF 125 kHz		
1 869.1 MHz		MultiSF 125 kHz		
RX2	869.1 MHz	SF12 125 kHz		

Дополнительные частоты могут быть установлены при помощи команд (см приложение В). Дополнительные частоты могут быть записаны сервером сети при проведении процедуры активации в соответствии со спецификацией «LoRa alliance».

В случае использования устройства на сервере сети «Сеть 868» и ОТАА активации устройству передаются дополнительные, частоты:

Таблица 1.4 Дополнительные частоты RU864 для сервера «Сеть 868»

Канал	Частота	Модуляция		
2	864,1 MHz	MultiSF 125 kHz		
3	864,3 MHz	MultiSF 125 kHz		
4 864,5 MHz		MultiSF 125 kHz		
5 864,7 MHz		MultiSF 125 kHz		
6 864,9 MHz		MultiSF 125 kHz		

- RU868 «Сеть868». В устройство загружены следующие частоты:

Таблица 1.5 Частотный план RU868

Канал	Частота	Модуляция
0	864,1 MHz	MultiSF 125 kHz
1	864,3 MHz	MultiSF 125 kHz
2	864,5 MHz	MultiSF 125 kHz
3	864,64 MHz	MultiSF 125 kHz
4	864,78 MHz	MultiSF 125 kHz
5	868,78 MHz	MultiSF 125 kHz
6	868,95 MHz	MultiSF 125 kHz
7	869,12 MHz	MultiSF 125 kHz
RX2	864,92 MHz	SF12 125 kHz

- EU868. В устройство загружены следующие частоты:

Канал	Частота	Модуляция		
0 868,1 MHz		MultiSF 125 kHz		
1	868,3 MHz	MultiSF 125 kHz MultiSF 125 kHz MultiSF 125 kHz MultiSF 125 kHz MultiSF 125 kHz MultiSF 125 kHz		
2	868,5 MHz	MultiSF 125 kHz		
3	867,1 MHz	MultiSF 125 kHz		
4	867,3 MHz	MultiSF 125 kHz		
5	867,5 MHz	MultiSF 125 kHz		
6	867,7 MHz	MultiSF 125 kHz		
7	867,9 MHz	MultiSF 125 kHz		
RX2	869,525 MHz	SF12 125 kHz		

Таблица 1.6 Частотный план EU868

- произвольный ЧП. Имеется возможность настроить 8 частотных каналов и частоту RX2;

2.1. Описание устройства

Необходимые для ознакомления элементы приведены на рисунке 2.1:

Рисунок 2.1 Внешний вид приёмо-передающего устройства

- 1. Сервисная кнопка;
- 2. Антенна;
- 3. Клеммник внешнего питания;
- 4. Перемычка выбора питания от батареи (ХР1);
- 5. Разъем USB;
- 6. Светодиод;
- 7. Перемычка выбора внешнего питания (ХР4);
- 8. Батарея питания;
- 9. Клеммники для подключения счетчиков;
- 10. Датчик магнитного поля.

2.2.Описание входов

Обозначение входов устройства указаны на рисунке 2.2. Назначение входов приведено в таблице 2.1.

Рисунок 2.2 Обозначение входов

Таблица 2.1 Описание входов

Вход	Назначение
BX1	Импульсный вход 1
BX2	Импульсный вход 2
BX3	Импульсный вход З
BX4	Импульсный вход 4
BX5	Импульсный вход 5
BX6	Импульсный вход 6
ВП	Подключения внешнего источника питания с выходным напряжением от 5 до 12 В
USB	USB разъем для настройки и конфигурирования

2.3.Описание работы сети

Передача данных по технологии LoRaWAN на физическом уровне, основана на свойстве радиосистем увеличивать энергетику (и дальность связи, соответственно) за счёт снижения скорости трансляции. Чем меньше битовая скорость, тем больше энергии отводится каждому биту. Благодаря этому принимающей части системы легче его выделить среди шумов от помех. С понижением скорости передачи данных увеличивается дальность распространения радиосигнала и радиус действия принимающего шлюза.

Принцип построения LoRaWAN схож с сетями мобильной связи: используется конфигурация «звезда», где каждое конечное устройство напрямую «общается» со шлюзом. Сети LoRaWAN городского и большего масштаба строятся по топологии «звезда звёзд».

Шлюз, модем или устройство с LoRaWAN-модулем, отправляет данные по радиоканалу. Шлюз принимает сигналы от всех устройств, что находятся в радиусе его действия. Затем данные обрабатываются и отправляются удалённому серверу по доступному каналу связи с большей пропускной способностью (3G, 4G или Ethernet).

Рисунок 2.3 Структурная схема сети

2.4.Индикация устройства

Для удобства ввода в эксплуатацию и проверки текущего состояния устройства используется светодиод (рис. 2.4) для индикации. Описание работы светодиода в таблице 2.2.

Рисунок 2.4 Индикация устройства

Таблица 2.2 Описание работы светодиода

Действие	Значение
Не горит	Режим хранения / режим опроса входов
Кратковременное зажигание/гашение	Режим обмена с сетью
Вспышка	Подтверждение выполнения теста / подтверждение отправки пакета
Две вспышки	Режим проверки связи с сервером

2.5.Описание работы устройства

В процессе хранения или использования устройство может находится в одном из перечисленных состояний:

1. Хранения – устройство потребляют минимум энергии. В этом режиме устройство находится изначально и в таком состоянии выдаётся установщику;

2. Обмена с сетью – индикация работы в данном режиме – кратковременное зажигание (гашение) светодиода. В этом режиме устройство находится не менее трех раз в сутки и осуществляет передачу данных на базовую станцию;

3. Работа- периодический опрос импульсных выходов счетчиков, измерение напряжения батареи.

Запуск устройства в работу осуществляется нажатием сервисной кнопки (или поднесением магнита, если кнопка не установлена).

В процессе старта светодиод используется для фиксирования прохождения этапов самотестирования. При удачном выполнения каждого пункта теста светодиод кратковременно вспыхнет. После трех вспышек светодиода все тесты пройдены.

Устройство запустит стек LoRaWAN и начнет процедуру ОТАА активации. Индикация режима – периодическое мигание светодиода. Если регистрация прошла успешно будет отослан первый пакет и светодиод устройство вспыхнет один раз примерно на 0,5 сек. Последующие отправки пакетов будут происходить 1 раз в 8 часов (3 раза в сутки).

В рабочем режиме, для проверки связи с сервером, можно послать в сеть одно сообщение с подтверждением о доставке. Для этого необходимо поднести магнит (или удерживать сервисную кнопку) к устройству и удерживать его до двух вспышек светодиода, затем убрать магнит. Если посылка сообщений началась, то светодиод выдаст короткую вспышку.

Для регистрации расхода воды в счетчиках или срабатывания дискретных устройств сигнализации, на устройстве используются шесть аналоговых входов, подключенных к внутреннему АЦП микроконтроллера, опрашиваемых с определенной частотой. Таким образом, микроконтроллер находящийся в устройстве запоминает количество срабатываний импульсных выходов счетчиков.

Каждые 8 часов устройство производит передачу накопленных данных с форматом передачи описанным в приложении А.

Каждый канал имеет индивидуальную настройку как по типу счетного выхода (релейный, релейный с параллельным резистором и схема NAMUR), так и по функциональному назначению (счетный вход, вход для подключения дискретных датчиков). Устройство перед установкой должно быть сконфигурировано согласно пункта 4 настоящего РЭ. Конфигурирование может производиться на заводе изготовителе согласно индивидуальному заказу. По умолчанию устройство сконфигурировано на шесть счетных входов с релейной схемой включения.

Устройство способно определить короткое замыкание при включении импульсных выходов типа NAMUR и разрыв счетной цепи в случае подключения выходов типа NAMUR и релейной схемы с параллельным резистором.

К устройству можно подключить дискретные устройства сигнализации с нормально замкнутым и нормально разомкнутыми контактами.

3.1. Обследование помещения

Перед началом установки приборов в помещениях, необходимо предварительно проверить возможность сообщения устройств по сети LoRaWAN. Для этой цели можно использовать портативное устройство УНУ-О1 (рисунок 3.1).

Рисунок 3.1 Внешний вид устройства УНУ-01

Включите устройство УНУ-О1 и поднесите его в то место, где предполагается установка устройства. Нажмите кнопку «Configuration» для отправки внеочередного пакета данных. После передачи пакета данных, вспыхнет светодиод отправки «Transfer».

Проверьте уровень сигнала от УНУ-01 на сайте (https://iot.net868.ru). Для этого выберите ветку «Мои устройства» (поле 1 на рисунке 3.2) и в поисковую строку (поле 2 на рисунке 3.2) введите DevEUI адрес устройства (изображен на обратной стороне УНУ-01).

Щелкните имя устройства (поле 3 на рисунке 3.2). В результате откроется страница с основными сведениями об УНУ-01 (рисунок 3.3). Выберите вкладку «Соединения» и обратите внимание на уровень сигнала «RSSI» последнего принятого сообщения. Если уровень сигнала -100 dBm и слабее или уровень SNR слабее -10dB, то устройство УМКа440 не может быть установлено в исследуемом месте.

СЕТЬ 868	≡ 8 80 УСТРОЙСТ	00 77 00 112 B A	Звонок по России бесплатный	
С Главная	🕞 Мои устрой	ства	\odot	На карте
🖵 Приложения	2 00-00-00-00-0 Application	1-9A-C3-22 Alias	DevEUI 1	Модель
🌀 Шлюзы 🗸 🗸	BaseApp	УНУ_01ad 3	00-00-00-00-01-9A-C3-22	УНУ-01, v1.0
🛆 Устройства 🖍				
1 Мои устройства	Вы можете добавит	ть еще 10 устройств н	<приложениям	
На карте				
Добавить устройство				
Каталог				

Рисунок 3.2 Поиск устройства УНУ-01

Информация об устройстве					
ДАННЫЕ	СОЕДИНЕНИЯ	СЫРЫЕ ДАННЫЕ		аса 🔿 12 часов	з 🔘 24 часа
Freq (MHz)	Modulation	BW (Hz)	Time(UTC)	RSSI (dBm)	SNR (dB)
864.3	LoRa	125	 31.08.2017 19:22:02	 -46	10.8
864.1	LoRa	125	31.08.2017 19:15:43	-35	8.8
864.3	LoRa	125	31.08.2017 19:15:28	-30	8

Рисунок 3.3 Информация об устройстве

3.2. Установка перемычки для выбора источника питания

Для переключения источника питания используется перемычка. Перемычка может быть расположена в двух положениях указанных на рис 3.4.

Рисунок 3.4 Установка перемычки

Внимание! Во избежание выхода устройства из строя и быстрого разряда внутреннего элемента питания: Установка обоих перемычек одновременно не допускается. Установка перемычки на контакты других разъёмов запрещена!

3.3.Подключение устройства к счетчикам

Перед установкой на объекте эксплуатации модуль должен быть сконфигурирован. Для этого необходимо:

- Установить перемычку ХР4 (расположение разъёмов см на рис 2.2) и подключите разъем USB. Запустите программу терминала и подключитесь к модулю. Подробный перечень команд приведен в приложении В.
- 2. Введите тип входа командой set_input X -type_in -type_sensor, где X номер входа от 1 до 6, -type_in тип входа, может принимать следующие значения:

-nc – не сконфигурирован, данный параметр желательно не указывать, в противном случае по данному входу будет поступать ошибка с кодом 3;

-сІ – не используемый вход;

-ct – вход для подключения счетчиков;

-ano – вход для подключения нормально разомкнутых датчиков;

- апс – вход для подключения нормально замкнутых датчиков;

-ano_cr – вход для подключения нормально разомкнутых датчиков с внеочередной отправкой пакета;

-anc_cr- вход для подключения нормально замкнутых датчиков с внеочередной отправкой пакета;

-type_sensor - тип схемы включения, может принимать следующие значения:

-r – релейная схема;

-n – NAMUR;

-rr –с релейным типом и параллельным резистором;

- 3. Запомните введение значения командой save_conf.
- 4. Выйдите из режима конфигурирования командой exit
- 5. Отключите USB кабель и снимите перемычку XP4.

Полярность подключения устройств для ВХ1- ВХ6 указана на рис 2.2. Для питания устройства от внешнего источника напряжения необходимо установить перемычку ХР4 и снять перемычку ХР1. Минусовой провод источника питания должен быть подключен ко второму контакту ХТ7, плюсовой - к первому. Нумерация контактов – от USB разъема. Максимальная длина провода до 20 метров с сечением от 0.3 до 0.8 мм2.

Устройство крепится винтами (саморезы, болты) к поверхности удобной для установки и подключению к разъёмам счетчика(рис 3.5). Во избежание прямого попадания воды, отверстие под провода при установке должно располагаться снизу.

3.4.Подключение к сети LORAWAN.

- Поднесите магнит к устройству для его включения.

- Дождитесь окончания процесса активации (светодиод должен потухнуть).

- Поднесите магнит для отправки внеочередных данных и убедитесь об их доставке на сервер.

- Проверьте на сайте (https://iot.net868.ru) наличие отправленного устройством пакета и уровень сигнала. Если пакет не пришел, повторите попытку отправки проведя магнитом/нажав кнопку повторно.

Если уровень сигнала RSSI ≥ -110 dBm и уровень SNR ≥ -10dB, то устройство можно устанавливать на рабочее место. Если данных нет или уровень сигнала недостаточен, то необходимо пересмотреть место установки устройства УМКа440. В случае невозможности переустановки устройства на другое место требуется обеспечить зону установки устройства покрытием дополнительной базовой станции.

3.5. Настройка устройства

По окончании установки на сайте http://meterapp.ru/ необходимо добавить устройство и привязать к нему счетчики.

Привязка устройства к счётчику:

- инициализируйте отправку сервисного пакета;

-зафиксируйте следующие данные в акте установки (Приложение Д): адрес установки, дату и время установки, показание счетчиков на момент установки, серийный номера счетчиков,), DevEUI устройства (указан в паспорте на устройство).

- на сайте http://meterapp.ru/ зарегистрируйте устройство и привяжите к нему счетчики по данным из акта установки.

4. ОБНОВЛЕНИЕ ПРОГРАМНОГО ОБЕСПЕЧЕНИЯ

Для перепрошивки устройства отключите перемычку XP1, подключитесь к нему через mini-USB, нажмите и удерживайте сервисную кнопку SW и подключите перемычку XP4 (при необходимости установите драйвера STSW-STM32080 с сайта www.st.com. Дождитесь, когда устройство войдет в режим программирования и начнет периодически мигать светодиодом.

Запустите программу «DfuSeDemo». Главное окно программы:

STM Device in DF Supports Uploa Supports Dowr Can Detach Enter DFU mode/ Actions	U Mode ad load HID detach	Manifestation tolera Accelerated Uploa Leave DFU mod	Appli ant Vend d (ST) Procu de	ication Mode: lor ID:	DFU Mode Vendor ID: Procuct ID Version:	e: 0483 DF11 0200
Select i arget(s);	Target Id 00	Name Internal Flash		Available Sectors 512 sectors	(Double Click	for more)
Upload Action File: Choose Transferred data :	Up size	Upgra File: Vendu Procuu Ver	de or Verify Ac or ID: ct ID: sion:	tion Targets in file	8:	

Рисунок 4.1 Главное окно программы

В разделе Upgrade or Verify Action нажмите кнопку «Choose». В появившемся окне укажите файл с новой прошивкой. Расширение файла dfu.

Подтвердите, нажав «Да»

Рисунок 4.2 Окно подтверждение.

Нажмите кнопку «Upgrade». Сначала будет очищена память и затем запрограммировано новое программное обеспечение (прошивка)

IfuSe Demo (v3.0.5)	- ×	Ø DfuSe Demo (v3.0.5)	– 🗆 X
Available DFU Devices STM Device in DFU Mode Supports Upload Manifes Supports Download Acceler Can Detach Enter DFU mode/HID detach Actions	Application Mode: DFU Mode: Vendor ID: Vendor ID: 0483 tation tolerant tated Upload (ST) Procuct ID: PF11 Version: 0200	Available DFU Devices STM Device in DFU Mode Supports Upload Manifestatic Supports Download Accelerated Can Detach Enter DFU mode/HID detach Leave D Actions	Application Mode: DFU Mode: Vendor ID: Vendor ID: 0483 Procuet ID: Procuet ID: Procuet ID: 0710 Version: 0200
Select Target(s): Target Id Name 00 Internal	Available Sectors (Double Click for more) Flash 512 sectors	Select Target(s): Target Id Name 00 Internal Flas	Available Sectors (Double Click for more) h 512 sectors
Upload Action File: ChooseUpload Transferred data size 0 KB(0 Bytes) of 85 KB(87852 Bytes) Description duration	Upgrade or Verify Action File: unu_h1.0_v1.7.dhu Vendor ID: [0483] Targets in file: Procuet ID: [0001] Veritor: [0107] Verify after download Optimize Upgrade duration (Remove some FFs)	Upload Action File: Choose Upload Transferred data size 22 KB(23720 Bytes) of 85 KB(87852 Bytes) Description direction	Upgrade or Verify Action File: unu_th1.0_v1.7.d/u Vendor ID: 0483 Targets in File: Procust ID: 0001 0107 Useriov.rel download Optimize Upgrade ducation (Remove some FFs)
OC:00:05 Target 00: U Abot	Choose Upgrade Veriy Ipgrading - Erase Phase (11%) Quit	00:00:58 Target 00: Upgra	Choose Upgrade Verity ding - Download Phase (27%) Quit

Рисунок 4.3 Процесс прошивки.

При успешном окончании программирования в полосе статуса будет выдано сообщение:

IfuSe Demo (v3.0.5)			– 🗆 ×
Available DFU Devices			
STM Device in DFU Mode	~ ~ A	pplication Mode:	DFU Mode:
Supports Upload Manifestation tolerant Supports Download Accelerated Upload (ST) Can Detach		endor ID:	Vendor ID: 0483 Procuct ID: DF11
Enter DFU mode/HID detach	ve DFU mode		
Actions			
Select Target(s): Target Id Name 00 Interna	Flash	Available Sectors 512 sectors	(Double Click for more)
Upload Action File: Choose Upload	Upgrade or Verify File: unu Vendor ID: 048 Procuct ID: 000	Action 1_h1.0_v1.7.dfu 3 Targets in file 00 ST	<u>к</u>
Transferred data size	Version: 010	7	
85 KB(87852 Bytes) of 85 KB(87852 Bytes)	Verify after do	ownload	o como EEo)
Operation duration		rade duration (Hemov	e some FFSJ
00:01:54	Choose	Upgrade	Verify
Targe	et 00: Upgrade su	ccessful !	
Abort			Quit

Рисунок 4.4 Завершение прошивки.

На этом этап прошивки завершен. Нажмите кнопку «Quit» и отключите USB кабель от устройства.

5. КОМПЛЕКТНОСТЬ

Устройство приема-передачи УМКа440

Паспорт

ВБРМ.007.000.000 1 шт. ВБРМ.007.000.000 ПС 1 шт.

6.1. Обслуживание

Возможна замена питающего элемента которую должна осуществлять сертифицированная сервисная служба. После замены элемента необходимо повторить процедуру привязки счетчика, описанную в пункте 3.5 настоящего руководства.

6.2. Срок службы и хранения, гарантии изготовителя

Срок службы в режиме работы, гарантийные сроки эксплуатации и хранения указаны в паспорте на УМКа440. Хранение должно осуществляться в упаковке завода-изготовителя (без переконсервации) в складских

помещениях при температуре окружающей среды от минус 50 °C до плюс 50 °C с относительной влажностью до 80% при плюс 25°C.

Гарантийный срок хранения исчисляется с даты приемки изделия ОТК.

Гарантийный срок эксплуатации исчисляется со дня ввода в эксплуатацию, при выполнении условий эксплуатации. При отсутствии в паспорте записи даты ввода в эксплуатацию гарантийный срок эксплуатации исчисляется со дня изготовления (приемки ОТК).

Изготовитель гарантирует соответствие устройства требованиям ТУ 26.30.11-002-29608716-2018, при соблюдении потребителем условий монтажа, эксплуатации, технического обслуживания, хранения и транспортировки, установленных эксплуатационной документацией.

Предприятие изготовитель не несет гарантийных обязательств при выходе устройства из строя, если:

– УМКа440 не имеет паспорта;

– разделы паспорта «Свидетельство о приемке» не заполнены или в них не проставлен штамп ОТК;

 – DevEUI и штрих код устройства в паспорта отличаются от соответствующих данных нанесенных на устройство;

 отсутствует или поврежден штрих код предприятия изготовителя на устройстве или номер штрих кода в паспорте;

– УМКа440 используется с нарушением требований настоящей инструкции;

– УМКа440 имеет повреждения;

– УМКа440 имеет внутренние повреждения, вызванные попаданием внутрь посторонних предметов;

6.3. Сведения о рекламациях

Изготовитель не принимает рекламации, если счетчики вышли из строя по вине потребителя при неправильной эксплуатации и несоблюдения указаний, приведенных в разделе 4 настоящего руководства, а также нарушения условий транспортирования транспортными организациями.

Адрес производителя: 350010, Россия, Краснодарский край, Краснодар г, ул. Зиповская, д 5, корпус 1, литер 25, 000 «ИНТЕРНЕТ ВЕЩЕЙ»

Сайт изготовителя: http://net868.ru Техническая поддержка: http:// help.net868.ru Телефон: 8(800)77 00 112

ВНИМАНИЕ! Сохраняйте паспорт изделия в течение всего срока службы прибора.

В посылке присутствует 30 байт.

- 1 байт определяет какой формат (версия протокола) кадра используется при передачи данных (всегда 0х02);
- 2 байт порядковый номер переданных измерений;
- 3 байт байт статуса. Описание в таблице 2.3;

Бит поля Status	Связанное с битом событие	Примечание
0	Управляющее воздействие	Нажата сервисная кнопка
1	Неисправность	Иметься неисправность
2	Срабатывание ТС1	Сработал канал с дискретного датчика 1-6
3	Срабатывание ТС2	
4	Срабатывание ТСЗ	
5	Срабатывание ТС4	
6	Срабатывание ТС5	
7	Срабатывание ТС6	

Таблица 2.3 Описание байта статуса УМКа440

С 4 байта по 27 байт значения счётчиков с первого канала по шестой по четыре байта на канал:

1 байт - старший значащий байт счетчика;

2 байт - байт номер 1 счетчика;

3 байт - байт номер 2 счетчика;

4 байт - младший значащий байт счетчика;

Значение счетчика передается в порядке от старшего к младшему (big-endian). Пример: число 0xA1B2C3D4 передается 0xA1, 0xB2, 0xC3, 0xD4, при этом 0xA1 в 4-м байте пакета.

28 байт - напряжение питания батареи;

Значение напряжения передается в диапазоне от 3,0 В до 3,6 В. При этом 0x00 значения байта соответствует 3,0 В и менее, 0xFF - 3,6 В и выше, весовой коэффициент равен 0,002353. Напряжение питания батареи равно 3,0 В + ((8-й байт пакета) * 0,002353) В.

29 и 30 байт – код возникшей ошибки, имеет значение, если 1 бит байта статуса установлен;

Номер бита	Описание	Примечания
0	Короткое замыкание по цепи 1	Если установлены оба бита, то
1	Обрыв по цепи 1	вход не проинициализирован
2	Короткое замыкание по цепи 2	Если установлены оба бита, то
3	Обрыв по цепи 2	вход не проинициализирован
4	Короткое замыкание по цепи З	Если установлены оба бита, то
5	Обрыв по цепи З	вход не проинициализирован
6	Короткое замыкание по цепи 4	Если установлены оба бита, то
7	Обрыв по цепи 4	вход не проинициализирован
8	Короткое замыкание по цепи 5	Если установлены оба бита, то
9	Обрыв по цепи 5	вход не проинициализирован
10	Короткое замыкание по цепи 6	Если установлены оба бита, то
11	Обрыв по цепи 6	вход не проинициализирован
12	Низкий уровень батареи для УМКА440	Напряжение на батарее менее ЗВ
13	Резерв	
14	Отсутствует или повреждена	
	конфигурационная информация	
15	Резерв	

Таблица 2.4 Описание 16-ти битного поля с кодом возникшей неисправности УМКа440

Команда	Аргументы	Пример	Описание и результат
		Команды платформы	
exit	нет	exit	Выход из приложения
			конфигурирования и управления
help или ?	нет		Вывод справки о командах
reset	нет	reset	Перезагрузка устройства
info	нет	info	Вывод информации о
			установленном программном
			обеспечении
send	нет	send	Отправка единичного пакета
servp	нет	servp	Отправка серии сервисных пакетов.
			Идентична нажатию кнопки на
			время порядка 1,5 сек
load_conf	нет	load_conf	Загрузка во внутренние структуры
			из памяти программ
			конфигурационной информации.
save_conf	нет	save_conf	Сохранение конфигурационной
			информации в памяти программ.
			Данная команда должна быть
			выполнена при изменениях сетевой
			конфигурации а также после ввода
			серийных номеров счетчиков.
print_conf	нет	print_conf	Вывод текущей конфигурации на
			консоль. Выведена будет
			информация о сетевых настройках
			устройства.
load_default_conf	нет	load_default_conf	Загрузка конфигурации по
			умолчанию. См. примечание 1

Приведённые ниже команды актуальны для версии платформы 1.3.3 и версии приложения 1.0.1.

set_otaa	0 или 1	set_otaa 1 – использовать	Выбор типа активации. См.
		ОТАА активацию;	примечание 2, 3, 4
		set_otaa O – использовать	
		АВР активацию;	
set_public	0 или 1	set_public 1 – сделать	Выбор типа видимости устройства
		устройство публичным,	См. примечание 3, 4
		set_public О – сделать	
		устройство приватным.	
set_de	XX-XX-XX-XX-XX-XX-	set_de 00-00-00-00-00-	Установка глобального уникальный
	ХХ-ХХ – новый	00-01-7F – установить	идентификатор LoRaWAN-модуля
	DevEUI устройства	устройству DevEUI = OO-	конечного устройства. См.
		00-00-00-00-00-01-7F	примечание 3, 4
set_ak	XX-XX-XX-XX-XX-XX-	set_ak 2B-7E-15-16-28-	Установка уникального ключа
	XX-XX-XX-XX-XX-XX-	AE-D2-A6-AB-F7-15-88-	приложения для конечного
	XX-XX-XX-XX –	09-CF-4F-3C – установить	устройства (16 байт, AES-128).
	новый АррКеу	устройству АррКеу = 2В-	АррКеу необходим для получения
		7E-15-16-28-AE-D2-A6-	(извлечения) сеансовых ключей
		AB-F7-15-88-09-CF-4F-3C	NwkSKey и AppSKey при ОТАА-
			активации прибора в сети. См.
			примечание 3, 4
set_ni	XX-XX-XX-XX –	set_ni 00-00-00-30.	Установка индификатора сети при
	новый NetID	Установить устройству	АВР активации. См. примечание 3, 4
		NetID = 00-00-00-30	
set_da	XX-XX-XX-XX –	set_da 00-00-01-FF.	Установка сетевого адреса
	новый DevAddr	Установить устройству	устройства (32 бита, 4 байта),
		DevAddr = 00-00-01-FF	необходимый для определения
			адресата пакетов на сетевом уровне.
			При ABP-активации DevAddr
			назначается (присваивается)
			производителем прибора в момент
			настройки на производстве из
			выделенного ему оператором связи

			(Сеть868) диапазона адресов. При
			ОТАА активации выдаться сетью.
			См. примечание 3, 4
set_nsk	XX-XX-XX-XX-XX-XX-	set_nsk 2B-7E-15-16-28-	Установка уникального ключа
	XX-XX-XX-XX-XX-XX-	AE-D2-A6-AB-F7-15-88-	сетевой сессии (16 байт, AES-128),
	XX-XX-XX-XX –	09-CF-4F-3C – установить	при ОТАА-активации передаётся
	новый NwkSKey	устройству NwkSKey = 2B-	устройству в зашифрованном виде с
		7E-15-16-28-AE-D2-A6-	помощью ключа АррКеу, при АВР-
		AB-F7-15-88-09-CF-4F-3C	активации — записывается на
			производстве в момент настройки
			прибора. См. примечание 3, 4
set_ask	XX-XX-XX-XX-XX-XX-	set_ask 2B-7E-15-16-28-	Установка уникального ключа
	XX-XX-XX-XX-XX-XX-	AE-D2-A6-AB-F7-15-88-	сессии приложения (16 байт, AES-
	XX-XX-XX-XX –	09-CF-4F-3C – установить	128), при ОТАА активации
	новый АррЅКеу	устройству АррЅКеу = 2В-	передается устройству
		7E-15-16-28-AE-D2-A6-	зашифрованным с помощью ключа
		AB-F7-15-88-09-CF-4F-3C	АррКеу, при АВР активации
			записывается в устройство в момент
			настройки на производстве. См.
			примечание 3, 4
set_ap	ХХХ – новый	set_ap 3 – установит	Данный параметр у пользователя не
	логический порт	новый порт для отправки	должен изменяться. Только для
	приложения	данных	производителя.
set_dc	ХХХХ – новый	set_dc 3600 – установить	Данный параметр не рекомендуется
	период отправки	новый период отправки	делать ниже 3600 сек. См.
	пакетов в секундах	пакетов в 3600 секунд (1	примечание 3, 4
		час)	
set_td	XX от O до 20	set_td 14 – установит	Установка мощности передачи.
		мощность передачи в 14	Данный параметр не рекомендуется
		dBm	изменять у пользователя. См.
			примечание 3, 4
set_adr	0 или 1	set_adr 1	Включение/выключение ADR. См.
			примечание 3, 4

NbTrials	От 0 до 10	NbTrials 10	Установка количества попыток
			доставки для периодических
			пакетов.
set_ufp	RU864, EU868,	set_ufp RU864	Установка используемого
	NET868, CUSTOM		частотного плана:
			RU864 – использование частотного
			плана RU864-870, согласно
			региональным параметрам;
			EU868 - использование частотного
			плана EU868, согласно
			региональным параметрам;
			NET868 – использование частотного
			палана «Сеть 868»;
			CUSTOM – использование
			настраиваемого частотного плана
			согласно введённым частотам;
set_freq	N FREQ, где N от O	set_freq 2 864100000	Установка канала передачи. Первые
	до 7 – номер		З канала используются для
	частотного канала,		активации устройства в случае
	FREQ – значение		использования настраиваемого
	частоты.		частотного плана, в ином случае
			игнорируются. Остальные каналы
			используются согласно
			следующему правилу: если частота
			была выдана при активации, то
			используется её значение, если нет,
			то используется частота согласно
			ЧП, если в настройках для данного
			канала введен О, в ином случае
			используется введённая частота.
set_rx2	FREQ DR, где FREQ –	set_rx2 869100000 0	Установка частоты приема RX2 для
	значение частоты		настраиваемого частотного плана.
	RX2, DR –		

	фиксированная		
	скорость приема		
	RX2		
		Команды приложения	
print_input	нет	print_input	Вывести введённую конфигурацию опросных выходов.
set_input	X -type_in -	set_input 1 –ct –r – выход	Установить тип входа. См.
	type_sensor	1 сконфигурировать как	примечание 3, 4, 5
		счетный с релейным	
		типом входа	
print_value	нет	print_value	Выводит значения на входах, если
			они сконфигурированы как счетные.
print_alarm	нет	print_alarm	Выводит значения срабатывания
			датчиков, если входы
			сконфигурированы для опроса
			датчиков
print_error	нет	print_error	Выводит значение кода ошибки на
			входах
print_bat	нет	print_bat	Выводит значение напряжения
			батареи в мВ
get_poll_freq	нет	get_poll_freq	Выводит частоту опроса выходов в
			Гц.
set_poll_freq	От 4 до 16	set_poll_freq 6	Устанавливает частоту опроса
			выходов в Гц. Максимальная
			входная частота импульсов должна
			быть в 4,4 раза меньше частоты
			опроса.

Приложение Г. Значения конфигурации по умолчанию:

```
over_the_air_activation = 1;
public_network = 1;
dev_eui = 00-00-00-00-00-01-7F;
app_eui = 00-00-00-00-00-00-02;
app_key = 2B-7E-15-16-28-AE-D2-A6-AB-F7-15-88-09-CF-4F-3C;
net_id = 00-00-00;
dev_addr = 00-00-01-81;
nwk_skey = 2B-7E-15-16-28-AE-D2-A6-AB-F7-15-88-09-CF-4F-3C;
app_skey = 2B-7E-15-16-28-AE-D2-A6-AB-F7-15-88-09-CF-4F-3C;
app_port = 3;
tx_duty_cycle = 28800;
tx_dbm = 14;
type_sensor_ch1 = 0;
type_chanel_ch1 = 2;
type_sensor_ch2 = 0;
type_chanel_ch2 = 2;
type_sensor_ch3 = 0;
type_chanel_ch3 = 2;
type_sensor_ch4 = 0;
type_chanel_ch4 = 2;
type_sensor_ch5 = 0;
type_chanel_ch5 = 2;
type_sensor_ch6 = 0;
type_chanel_ch6 = 2;
adr = 1;
freq_poll = 8;
NbTrials = 0;
UFP = 0;
```

Приложение Д: Акт установки

Акт установки устройства УМКа440

Адрес установки:	
Дата и время установки:	
DevEUI:	
Модель счетчика	
Показания счетчиков:	
Серийный номера счетчиков:	

Установщик

(Ф.И.О. подпись)